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ABSTRACT

We prove the existence, continuity and uniqueness of solutions of the

Cauchy problem and of the first and mixed boundary value problems for the

equation

() ut C=(u)xx + b(u)x .

i and b are assumed to belong to a large class of functions including the

m x
particular cases (u) - u , b(u) = u ; m ) I and X > 0. These results

significantly sharpen those currently available in the substantial literature

devoted to (E) over the last two decades . In particular, the uniqueness is

proved in a generality whii' allows (E) to model problems invoking the

evaporation of a fluid through a porous medium.

AMS (MOS) Subject Classifications: 35K55, 35K65

Key Words: Nonlinear degenerate parabolic equation, infiltration and
evaporation problems, continuity and uniqueness of
generalized solutions.

Work Unit Number 1 (Applied Analysis)

(1) Facultad de Matematicas, Universidad Complutense de Madrid, SPAIN
(2) Computer and Automation Institute of the Hungarian Academy of Sciences,
Budapest, HUNGARY.

() Partially sponsored by the U.S. Army under Contract No. DAAG29-80-C-0041.



SIGNIFICANCE AND EXPLANATION

During the last two decades a great deal of progress has been made on the

mathematical analysis of flows through porous media. Such phenomena led to

degenerate nonlinear parabolic equations. The equations obtained are of

different nature when the fluid movement takes place in a horizontal column of

the medium rather than in a vertical column of the medium. The latter case

gives rise to first order nonlinear perturbations of the former case and

equations of this more general sort also model the evaporation of a fluid

through a porous medium. A significant technical difficulty arises in the

evaporation case; the first order nonlinear terms can be singular at the

points where the solution vanishes.

In this paper the authors give a mathematical treatment of the Cauchy

problem as well as the first and mixed boundary value problems for the

relevant equations. Existence, continuity and uniqueness of generalized

solutions are proved thereby improving earlier results in the mathematical

literature.
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ON A NONLINEAR DEGENERATE PARABOLIC 8UATION IN

INFILTRATION OR EVAPORATION THROUGH & POROUS MEZDIUM

J. Ildefonso DIaz
(1) (*) and Robert Xorener

(2 )

} I • Introduction.

This paper deals with the nonlinear parabolic equation

(Z) ut - (u)xx + b(u)x

where * and b are continuous real functions.

Equation (a), sometimes called the nonlinear Pokker-Planck equation, arises, for

example, in the study of the flow of a fluid through a homogeneous isotropic rigid porous

medium. If 0(t,x,y,z) denotes the volumetric moisture content and v (tx,y,z) the

velocity then the continuity equation is

+ divv- 0
at

the density of the fluid being asesumed constant. By the Darcy law

v - -K(8) * grad *

where K(6) is the hydraulic conductivity and 9 Is the total potential. If absortion

and chemical, osmotic and thermal effects are neglected, then, for unsatured flows, 9 may

pn e v;p e r a the sum of a hydrostatic potential due to capillary auction *(e) and a

gravitational potential ([3],[32]). Thus, if we choose the (x,y,z) coordinate system in

such a way that the z-coordinate is vertical and pointing upwards, we may write.

0 = +

Then we obtain

(1.1) as div aoe rde - €e
-i (0(8) grad 0) + - K(8)

where

(1.2) D(e) - K(e).- (e)

(i) Facultai de Matematicas, Universidad Complutense de Madrid, SPAIN
(2) Computer and Automation Institute of the Hungarian Academy of S1cienoes, Budapest,
HUNGARY.

(') Partalaly sponsored by the r.9. Army under Contract No. DAAG29-80-C-0041.

":.. .. .. -° ... .. .. "...... : ' ? '' :*' ,n '"" "' i. ;. ]...



If the fluid movement taken place in a vertical column of the medium, equation (1.1)

takes the form

(1.3) 6 . #(9) + b() z
(1) t s~ezz

being

(1.4) #(s) f: D(r)dr, b(8) - K(s) for r e R

If the fluid movement takes place in a horizontal column of the medium and x denotes

distance along the column, (1.1) reduces to the equation

(1.S) 
t  - V(e)xx .

lqation (1.5) also appears in many other contexts. It is also remarkable that the

mathemaical theory for this equation is fairly well advanced at the present, in contrast

with that of equation (1.3). (See, for instance, the survey article of L.A. Peletier in

[301]).

The functions D and K (and then # and b) are usually determined empirically

according to the nature of the flow problem, as well as of the nature of the porous

medium. In any case a reasonable choice for D and K would be

D(u) - D0us- *K(u) Kau

where DO , ko , a and X are positive constants. After a suitable rescaling of the

independent variables the equation (.3) yields (by changing a by x)

Z a X ) ut - (u xx + (u )x •

The flow problem which has been treated more frequently in the mathematical literature

corresponds to the phenomena of abeorption and downward infiltration of a fluid (e.g.

water) by the porous medium (e.g. soil). In those cases, some physical experiences show2r
that the corresponding functions K and # are such that + e C (to,-)),

*(o) - *(o) - 0, '(r) > 0, 00(r) > 0 if r > 0 and b e C (o,)) b(o) - o,

b'(r) > 0, b"(r) > 0 if r ) 0. (see (35 p. 2201 and 13 p. 5111. In terms of equation

(RU A) those cases correspond to the assumptions a > 1 and A > 1. (Some mathematical

papers on such problems are [191, [161, (141, (271. t371, (1l, and [381).

Nevertheless, there are other interesting flow problems that give rise to different

elections of the functions K and # (and then of # and b); at present, no mathematical
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literature exists on the corresponding equations.

Thus, the physical problem of evaporation from bare soil when the surface is so dry

that water lose is limited by the rate of soil-water movement upwards has been studied for

many years (see e.g. [31], (35] and the references therein). In such problems, the

hydraulic conductivity function K is a regular concave function (see [24, p.
4 2 5

1, [31,

p.
35 7

1 and (3
5
,p. 2591 and D is a regular increasing function). An imediate change of

variables shows that the value of m and x for which equation (
3
m') governs the

evaporation problem are m ) I and 0 - ). < 1.

The main objective of this paper is to consider the equations (M) and (B M'X) in a

general framework, which includes the corresponding equations of evaporation problems in

particular.

To be precise, we shall study the following three problems for equation %):

( ut = *(u)XX + b(u)x on S - (oT) x(--,-.)
(CP}

u(o~x) - us(x) on (-u.°)

ut . VU)xx + b(u)x  on R - (o,T) x (11012)

(PVlP) u(tlI- 4-(t) , u(t.l2 ) - #*(t) on (oT)

u(o,x) = U0 (x) on (11,12)

and ut - (U)xx + bWU)x on H - (o,T)x(--,12)

(MMr) ( U(t1l 2 ) : W) on (o,T)

u(o,x) - us(X) on (--,12

It is important to remark that the most interesting problem in evaporation (as well as

in downward infiltration) corresponds to (MBVP) with 12 = 0. (see [31, p.3591 and [35, p.

229]).

Like the porous media equation, (W) is a degenerate parabolic equation. At points

(t,x) where u > 0 it is parabolic, but at points where u = 0 it is not. In

consequence, we cannot expect the above problems to have a classical solution (in fact,

between a region where u > 0 and another one where u - 0, u need not be smooth). It

-3-



is, therefore, necessary to generalize the notion of solutions of these problems. Among

the different notion of solutions, we shall follow the one introduced in [19].

Definition 1.1. A function u(xrt) defined on 8 s said to be a generalized solution of

the (C.P) problem if

1) u is bounded, continuous and nonnegative
(1 )

11) u satisfies the integral Identityfi /t  fx, tw - -b'U)C jx~dt _ fx2 dlt
to x 1  x1  to

f *(u) xdtl - 0
tXl

for all P E Itot1 I x XX 2 ] and for all c e c 1
:
2 

(P) such that

C(t,x 1 ) - (t,x2 ) - 0 for any t e It 0 t 1I] .

iii) u(o.x) = u x) for all x e C--,-).

Definition 1.2. A function u(xtt) defined on R is said to be a generalized solution of

the (FBVP) problem if

i) u is bounded, nonnsative and continuous on R.

ii) u satisfies the integral identity I(uC,P) - 0 for any P - (toot I x [XlX 2 I C

1 2
and any C e C1 "  

M schtha x1t~x 
(P )

x suI that 2 -0

ill) u(t'l ) =-(,u(t'12 "+(t) for all t e [o,T] end u(o,x) - uo(W for all

x e [11,12J.

Definition 1.3. A function u(xt) defined on H is said to be a generalized solution of

the (MBVP) problem if

i) u is bounded, nonnegative and continuous on H.

11) u satisfies the integral Identity I(u,4,P) - 0 for any

P (tot X [xlx 2] C H and any C e t,x M such that 2 0.

iii) u(t,1 2 ) - *(t) for all t e [oT] and u(o,x) - u CX) for all x e (--,l
2 0e 2

(1) We shall limit our attention to the physically reasonable case of nonnegative data.
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To prove the existence of a generalized solution for each one of the three problems we

shall follow the constructive method given initially by O.A. Oleinik, A.S. Kalashnikov and

R. Yui Lin in [281 for the case of equation (1.5). To do this, we first obtain a sequence

of classical solutions of [W) defined on an expanding sequence of cylinders. We shall

show that it tends-pointwise-to a function that we call limit solution. (Such a function

satisfies all the properties required except, perhaps, the continuity). This will be done

in Section 2.

In Section 3 we shall prove that under additional hypotheses the limit solution is

continuous (i.e. is a generalized solution). Such results are well known when

• ([o,-)) and(1.6) (+ i' Ib'(r)lldr e L (o,0)

([14]). In the case of equation (Z*Q) this corresponds to the assumption

m ) I and X ) 1. The study of the regularity of its solutions is made in [191 and

[16]. In both cases, optimal estimates on the modulus of continuity of the solution are

given; in fact, such estimates are independent of b and X. In consequence, the idea

that the transport term b(u) x has not any fundamental importance on the behaviour of the

solution is defended in the previous literature. Here we shall show that such conclusinn

is, in general, erroneous (e.g. 0 > O) since when 0 C A < I the modulus of continuity

of the solution depends on A. Nore generally, if the function 3 defined by

Ji) r
i1r) f o 's )

b(*-(s)

is finite for r > 0 (this is the case, for instance, of #(u) = u , b(s) - a and

m > A) then we shall prove that the modulus of continuity of the solution of (E) can be

estimated in terms of the function Jo# and the data of each problem.

in Section 4 the uniqueness of the generalized solutions is considered. The problem

of uniqueness has been a polemic subject in the existing literature. Indeed, the first

uniqueness result seem to be the one obtained in 1975 by A.S. Kalashnikov. In his paper



(191, the uniqueness of a generalized solution of (z M.) is shown under the assumptions

a ) I and X ) 1. In 1976, 3.H. Gilding and L.A. Peletier in (161, made a systematic

study of equation (%', ) in a way which is totally independent Kalashnikov's work. In

fact they introduce a different notion of solution of the problem (CP)s they substitute

condition ii) and Ili) of the Definition 1.1. by

ii,. (um) has a bounded generalized derivative with respect to x in S,

iI)* u satisfies the identity

f {O ([(u x +ul - *tu}dxdt = '(x o)u (x)dx

for all # e C
1 s) which vanish for large xi and for t - T. The uniqueness result of

(161 for such class of solutions (called weak solutions) is obtained under the assumption

P 1/2(s+1). The important work [161 has been the object of several generalizations in

the last years. For instance, U.H. Gilding in (141 proved the uniqueness of weak solutions

of (CP), (FVP) and (K V) under the hypothesis

2 +

(1.7) (b) (s) - 0( (s)) as s + •

More recently, Wu Dequan In (371 has proved the uniqueness of the generalized solution of

(FUVP), assuming
a + V

((b')(s) = 0(( 8 ) (s)) as s + 0 , * (s) ) Ksv for a > 0, and01.8)

a 04 if V<2 and a) 1/2 - if v)2.

We remark that in terms of equation (Za condition (1.7) is equivalent to A )1/2 (r+1)

and condition (1.8) is equivalent to X )1/4 (m+3) if m < 3 and A > 2 if m • 3.

(Other uniqueness results are given in (271, (28] and [11] for some variations of equation

(9)). Finally, we point out some recent results obtained in (41 by a different approach.

In this paper we qive a general and unified answer to the problem of uniqueness of

solutions of (CP), (FUVP) and (MV?). Our assumptions on # and b are weaker than those

of the above papers. In particular, they are fulfilled if in the equation a we assme

I • 1 and X > 0. On the other hand, in Section 3 the equivalence between the

generalized and weak solutions is proved. Thus, the uniqueness of a weak solution is also

ensured.



Our uniqueness result is a particular consequence of some L- estimates. Those also

show the continuous dependence of solutions with respect to the Initial data as veil as

coaparison results. Such estimates also show that the semigroup operator defined by the

solution is a nonlinear semigroup of contractions on the space L (-s,.),

L1(11 #12 ) or L 1(dil2) respectively. Some comments are made about the way in which

that conclusion is obtained by the theory of accretive operators on Ranach spaces.

In order to provide the reader with a smeary collecting some of the results of this

paper, we shall restrict ourselves the consideration of problem (PC) for equation

We can state the following result:

Theorem 1.1. Assune a b1 and A 0 0. Let u0 a 0 on (-b,) be such that uo is

Lipschits continuous for some B such that

mAx ((m-11, (m-,) 4 ( a (h+-max{h,o)).

Then there exists an unique generalized solution u of the (CP) problem for the equation

(Z ,). In addition u e C"P.' (8) for v - &iW{I,1/ 6 } (being much exponent v, in

general, optimal$, (u ) x 6 L (B) and u coincides with the unique weak solution of (CP)
V U

(As usual C. 1 (8) denotes the manach space of the functions u(t,x) which are IWlder2
continuous with respect to x and t, of exponents v and I respectively).

2
We point out that our results can be easily extended to a more general class of

equations of the form

ut-*(x~t,U)x + b(x~t~u),, + C(xt,u})

where #(,,,,u) is strictly increasing *(x.t.o) - +u(x.to) - 0 and b(,-,u) and

c(*,*,u) are allowed to be nonnecessarily Lipschitz continuous at u - 0 (some

additional hypotheses must be made on b and c, e.g. c(.,,u) non-increasing in u, and

so on).

In a forthcoming article the authors study some qualitative properties, including the

propagation of the support of solutions, extending the well-known results for the case

where b is Lipschits continuous at u - 0 and presenting some new properties of the

solution of evaporation type problems associated to 9,A for % ) 1 and 0 CX < 1.

. ... . .. ....... ' " ' " " " -' -7-



12. Nxistence of a limit solution.

The basic idea in the study of degenerate equations, like (3), consists in obtaining

the solution as the limit of a sequence of functions which are solutions of some adequate

non-degenerate parabolic equations approaching equation (Z). This idea can be carried out

by two different ways& a) by consideration of the equations

u C t - (W((ue) + )(u ) x) x + b Cu) x

or, b) by replacing u (x) ), 0 by the sequence u0 C(x) ) c > 0 and then showing (via the

maximum principle) that the corresponding solutions u satisfy u C(tx) o , so they are

solutions of the nondegenerate equations.

Method a) is very useful if the signs of the data (for instance u. for (CP)) are not

"a priori" prescribed. However, the passage to the limit is often a difficult task (see

the results of [6] and [34] for the case b 2 0). Here we shall follow the method b)

introduced in (29]. Then we shall obtain a sequence of classical solutions defined on an

expanding sequence of cylinders and we shall prove that they converge pointwise to a

function that we call limit solution. In the next sections we shall prove that, under some

supplementary hypotheses, the limit solution roincides with the unique generalized

solution.

Proposltion 2.1. Assume that there exists a e 0o1J such that

(2.1) e C 2+a((0,+-))nc 1([0,)) , *(O) - 0, and *'(r) > 0 if r > 0

(2.2) b e ((0,-)

Thens

i) For every u° e CbC )(1) u0 ) 0 there exists at least one function u

defined on S such that u > 0, u e L (S) and u satlsfies il) and iii) of

Definition 1.1.

ii) For every u° 0 C ([11,121), u° 0, 0, e C ([o.t] j, + ) 0 and

*-(0) - uo(11 ), *+(0) U(1 2) there exists at least one function u defined on

such that u ) 0. uS L (R) and u satisfies ii) and iii) Definition 1.2.

(C) Cb(f) denotes the set of all the bounded continuous functions defines on Q.

-8-



io) For every u° e cb((-,12]), u0 > 0, 40 e C([0,t]), 4 ) 0 and *(0) - u (12

there exists at least one function u defined on H such that u satisfies ii)

and iii) of Definition 1.3.

The proof of Proposition 2.1 is already standard after the deep work [29] and its

generalizations (see for instance [191, [16], [27]). Nevertheless, in the next sections we

shall need some properties of the function u which are obtained by utsing the proof of

Proposition 2.1. This is the reason for our sketch.

We shall use the following result of the classical theory of quasilinear narabolic

equations.

Lemma 2.1. (see e.g. [14]) Let Q S (n1 I 25 x (0,T] , c, a e (0,1] and N e (0,-).

Suppose that u° e c 2+a([nn 2]) 1)*,2 e c I+[0,T] and

E U 0 N, £ M t" *2 
4 M

ti (o) - u(l), *I(o) *u 0)*(i ) + (b(u ))'(n i ) for i - 1,2.

Then (under assumptions (2.1) and (2.2)) there exists a unique function u(tx) such that

u e C1
:
2 (Q), (u) e C 1:2(Q), < u 4 M in

t x x t

ut = Vu) xx + b(u)x on Q

xx on [n
U(x,o )  0 1oX on l 2 ]

u(tF t ) = Wllt) on [o,TI, for i 1.2.

Proof of Proposition 2.1. We shall prove i). We can always choose M > 0,

f k I fo ( and {u o k } such that

k' k' k kt~k, 0k e (0,1I] , *k 0 as Ic *

u0k e C 2+ak(-,-), Ek 4 U ,k(x) 4 M if IxI<k and u 0,(x) = if Ixi>k

U ~k1 (X) 4 u k(x) for all x e

uo'k + u as k * - uniformly on compact subsets of (-s,')

Let Qk (-k,k+ ) x (0,T]. Then, by Lemma 2.1, there exists a unique function

uk e C12( such that: U (u e c 1:2 (Q), i, satisfies ()k x tsx k 4 Uk uk

Li



in Qk' ii1) Uk(Ox) - Uok(x) for lxi 4 k + 1,

iv) uk(t,k(k+l)) - N for t e [0,T]. Then, by a standard application of the maximum

principle we obtain that uk+l(t,x) ( uk(tx) for all (t,x) e Q . Hence, we can define

(2.2) u(t,x) - lim uk(tx)

for all (tx) e . The function u is nonnnegative, bounded and satisfies the integral

comdition 1i) in Definition 1.1. The proof of ii) and iii) are similar. The natural

modifi-,tions now being that uok are only defined in [11,112(n the proof of part (ii) of

Proposition 2.1). Also, there exist (*_k) and 1+I+,kI (sequences in C
1
+ k([O,TJ))

such that ck ' *.-kl 4+kM M, i-, k+l -,k' +,k+ 
< +,k ' -,k

0 )  
Uo k(ll)'

(4-.' * '(0) k(u k)~l) + (buk'(l)

(4k (0) -uCok (1 2 k) '(1 ) ((u ok)) (l1
, 
+ (b(Uok)'(11

+,k )(0) - Muo,kll(112 + Wuo,k ))l 112

Finally * **, +, *- 
+ 4_ uniformly on [0,T) when k * -.

Remark 2.1. Obviously, we can also consider more general quasilinear equations or choose

data u,(u,#-,#+) and (u 0 4), not necessarily continuous (see 117] and [4]). We

remark that the result applies to the equation (E ) when 0 < m < 1. When b B 0

such equation arise in plasma physic (see the exact references in [30]).

13 Regularity of the limit solutions. Existence of generalized solutions.

We shall now prove that, under some additional hypotheses, all limit solutions are

continuous and, therefore, generalized solutions.

The continuity of the solutions of degenerate parabolic equations is one of the most

difficult points in the study of such equations. After the precise estimates on the

smoothness of the solution of the porous media equation obtained by Aronson and Kalashnikov

in (1] and (8) respectively, the question of the continuity of the solution of the porous

media equation in higher dimensions remained an open question for a long time. However,

positive answers are well known today, concerning a large class of equations including the

porous media equation and some particular formulations of equatior (E) when the dimension

is equal to one (see (8), [71, (101, [34] and [40]).

-10-



Here we shall study the smoothness of the solutions of WI) and we shall try to

estimate the modulus of continuity of the solutions. Results of this kind are well known

for (3,,,) when a ) 1 and X ) I (see 1191) and more generally for (W) when # and

b satisfy (2.1). (2.2) as well as

(3.1 ) (b e cl1 (0,))

jJ{ #"(r)l + Ib"(r)l)dr e L1(0,1)

(see (14J). Our special Interest Is centered on (z) under several assumptions which

include the case of equation (Z M,) when a ) 1 and 0 < I < I.

An important tool in our study will be the fact that if we define the improper

integral

J(r) - r do1.

for every r > 0 (we can suppose, without loss of generality that b(o) - o) then, when

m A
*(s) - s and b(s) - s , (r) is finite if and only if m > X. Then our fundamental

hypothesis will be J(r) < + - for some r e (o,-).

In order to prove the continuity of the limit solution u constructed in 12, we shall

first obtain estimates on the modulus of continuity of uk which should not depend on

k. Afterwards we shall pass to the limit when k + + -. We start by studying the general

nondegenerate problem given in Lemma 2.1.

Proposition 3.1. Given 6 e (0, 1/2 (n 2 -nl)) and T e (O,T) let

- (0,T] x (n+6, 2 -), Q(T) - (T,T] x (n 1 ,n 2 ), Q 6 (T) - (r,T] x (n1+6,n2-8). Assume

(2.1)p (2.2) and that for every r e (0,c) the followl hypotheses hold

(3.2) J(r) < +

(3.3) b*(r)b(r) 4 - C1  '(r)

(3.4) I*"(r.1 ( C2 1b"(r)Il

for some positive constants C1 and C2 . Let f be the real function defined by

(3.5) f(r) - #- (j- (r)) for r > 0 .

Then for an u and given as in Lema 2.1, the solution u satisfioss for any 6

and T there exists a constant C (depending only on IL
6 
_and M) such that

-11-



(3.6) I~ft Cu)) xI < C in ST

If in addition. uO verifies s p I u W '

(3.7) (n+6,n -6) 0

then (3.6) holds in Q 6.

Before proving the above result, let us explain some facts about the proof. The

method we use is due to Bernstein. As in well known, the major difficulty of this method

appears in the selection of the function of u to be estimated. The estimate

Ig))I < C in Q a W

has been obtained by different authors in the following cases:

a) g(s) - *(a) (See [1] for b E0 and (14] if b satisfies (3.1))

b) g(s) - f a , if such integral converge and b Eo (see [1] and [19]. The
0

estimate (3.6) is completely new.

For equation (E mX), all the hypotheses of Proposition 3.1 are satisfied if

-A<1 4

In this case a single computation shows that f- ICs) m a~ s More generally we csn

prove (using Proposition 3.1) that

(3.8) H(B x1 4 C in Q, atM

for all e R such that

max ((m-1),(m-A) I'BCM

where h~ max {h,o). Then, estimate (3.8) includes also the estimates of [1], (19' '4nd

[11 for equation (EM' )

Proof of Proposition 3.1. Set w - f- C u). From equation CE) we obtain

(3.9) wt - i (f(wM) (W ) 2 + *(f(w))w - b'(f(w)) wxfw)ww x xx

Using the definition of J and f we have

(1) Recently Ph. fenilan has introduced in (5) a general method to obtain estimates like
(3.6). Estimation (3.8) can be found by this method but this Is not the case of the
general estimate (3.6).
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) -1 b'(f(w)) b(f(w))(#(f(w))jw" tJ l(w))w" fv)

f'(w) - b(f(w))%(f (w))

and
(#(f( wv W

(3.10) W b'(f())

Then

(3.11) t t (f(v)) w + b(f())v 2 b(f())w

Consider now a smooth function C (t,x) such that I - 1 on Q8 (T), C - 0 on the

parabolic boundary of Q and 0 4 C ( 1 in Q. Define the function a - p2 where

p - Wx; at any point (tox o ) e w vhere Y attains a positive maximum one has

z x 0 and zt - *'(f(w))zxx ) 0

Hence, at (t0 ,xo ) we have C Px - -CXP and

2 2pPt - *M(fPxx) ) (-c¢t + *I(f)CCxx 
+ 

2 #(f)2 2

Differentiating (3.11) with respect to x, multiplying the result by C 2 P and using the

former relations we obtain

- b"(ffC2 P 4 r P 3[-*(fl;f Cx- 2b'(flCx - b"(f)f'c) +
(3.12) + 2 2) + P2 t - *'(flxx - 2 *'(f)C -b'l(f)c C]rct 4MCxx x X

Using the hypotheses (3.3) and (3.4) we can find two positive constants K, and K2

depending only on #, b and M, such that

(3.13) 2 C2 P2 4 KCIPI + K2  at (tx)

By an elementary argument, (3.13) implies that

z(toxo) 4 K I + 2/4K 2 K 3

an.) hence

_sup viwx ( /2

To prove the second part, we note that 1w x is now bounded at t - 0. Hence we may take

a cut-off function C(t,x) - C(x) and allow z to attain its maximum at a point of the

lower boundary of Q. Otherwise the proof Is the same.
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The main result of this section is the following

Theorem 3.1. Let # and b satisfying the hypotheses of Proposition 3.1. Then

(a) For every u° e Cb(-4,"), u. ) 0 and for any T e (OT) the limit solutions u

of (CP) satisfy

(3.14) Jf
t
-(u(tlXI)) - f

1 
(u(t2 .x2 )) r K {1X1 -x2I 2 + It1- t21/2

for some constant K which depends only on T and N - u ol , and for all

(t 1 ,xI),(t 2 #x 2 ) e T,T] x (-,.). If in addition f -(u o ) is 1lpechitz continuous i.e.

If -1(u0(I)) -f- (u (x 2))1 C LIx-x 21

for some L > 0 and all x.x 2 e (-u,) tnen the conclusion (3.14) holds for any

(tiXI), (t 2 ,x 2 ) e S , and K depends only on M and L.

(b) For every u Cb 111 2 ]), u ) 0 and t, *+ e C ([0.T]),

4, , ) 0 satisfying *_(0) - u (1*),)+(0) - us(1 2 ) and for-any

T e (0,T) and 8 > 0, 8 < 2 , the limit solutions u of (FBVP) satisfies

(3.14) for every (t1 ,x1 ), (t21x2) e [T,T) x 111+26 #12 - 26]. In particular

f-1(u) e c ([,T] x (11,12)). If in addition f I(u) Is locally Lipschtz
2

continuous on ('V, 12) then u e c ([o,' ) 
x [11112]).

(c) A similar conclusion to (b) holds for the (MBVP) problem

Proof of (a). Applying Proposition 3.1 to the sequence u. constructed in the proof of

Proposition 2.1 we obtain

If 1
(uk+l(tl,xl)) - f- (uk4.(t 2 ,x2 ))l 4 Clx 1 -x2 l

where C depends only on K and T and for every

(t11XI), (t 2 ,x 2 ) e [T,T] x [-k-1,k+1]. Now set wK(t,x) - f- (uK(t,x)). Then w.

satisfies the equation

(wk )t - A k(tx) (wk)xx + Bk(tx)(wk)x

being

Ak(tx) = *'(f(vk))(t,x) and Bk(t,x) - b'(f(wk))[(wk)x-1](t,x)

Using Proposition 3.1 we know that

0 < 4k (t,x) C M * and IBK(tx)Il M*

-14-



II

where N* depends only on N and I . Then by a well known result (see 113]) there

exists a constant K which depends only on W' (i.e. on T and N but not on k) such that

(3.15) If-1(U k (tlxI)) - f- (uk+ (t 2.x 2 ))I {xl-x21
2 

+ It1-t 2 u"2

for all k * 1,(tioxI),At 2 #x2 ) e (TTJ x [-k-l,k 1]. Hence

(3.16) If 1 
(u(t 1,xI))-fCl(u(t 2 ,x2 M 4 X (I X-x 2 1

2 
+ ItI-t 2 1I)2

for all (tioxI), (t2 1x2 ) e [T,T) X (-,+e). This proves the first pert of (a). The

second statement is a direct consequence of the second conclusion of Proposition 3.1,

choosing now uk so that I(f -(u 0k))'(x)l 4 L for some xC (-,) and k > 1.

Proof of (b). Arguing as in part (a) we obtain that (3.16) holds for any

(t1,xI)o(t 21 x2 ) e [T,T) x [11+26,12-26] and, therefore, it in clear that

u 4! e([0,T] x (11,'2)) when f- (u ) is Lipschitz continuous on (11012). To prove

that u Is continuous at the points (o,TJ x (lI1 and (o,T] x (12} it is enough to prove

(for instance, for [o,T] x (11) that for any to eo,T]

(3.17) lim sup u(t,x) • * (t )
(t,x)+(to,11)

and01

(3.18) 1Ii inf u(t,x) t *(t 0).(t,x) (too,1)

Proving (3.17) is easy because

lim sup u(t,x) 4 lim sup u k(t'x) ,k(to)

(t,x) + (to,1I ) (tx) + (too1)

and then letting k + - we conclude the result. The proof of (3.18) is more complex (if

*.(t ) 1 0). This was shown by B.H. Gilding in [14] (Theorem 5) when * and b satisfy

(3.1). His argument is the following: for any £ e (0, (to)) he constructs a function

w(t,x) on (0,T] x [l1,12] such that

lim inf w(t,x) - C )-e

(tx) + (t,1 1 )

and such that

%tk(t'x) v(tx)

i -15-
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for all (t,x) e [0,T] x [111 2] and k large enough. We remark that the hypothesis

(3.1) is only used by Gilding in the definition of w when the convergence of the integral

P c S M *'(r)dr

o c.r+b(r)+B

is required (c is any positive constant and B I 1 + suplb(r)l). Our conclusion follows
0 (r(M

by the same argument of Gilding noting that

p (c) E f0 do

c - s)+b4$ ls))+B

Then, p (c) < - for every c e (0,-) if the assumption (3.2) is made. The details are

extremely technical and hence omitted here. The proof of (c) is analogous to the part (b).

Remark 3.1. Arguing as in [18] we can estimate the modulus of continuity of u in terms of

function f when (f- )" > 0 on (0,6). When (f-I )* 0 then the modulus of continuity

is a lineal function. In particular, for the equation (E N) we obtain that the solution

u of the (CP) problem is such that

u e cvv/2 ([0,T] x C--,-))

for v = minfl,1/BI and B and real number such that

max{(m-1),(M-X) + }  B ' m.

A further regularity result is the following:

Theorem 3.2. Let * and b satisfying the hypotheses of Proposition 3.1 Then

i) For any u 0 0 such that f- 1(u 0 ) is bounded Lipschitz continuous on (--r.)

there exists at least one generalized solution u of (CP) such that f- (u) e L'(S)
- x

(where the derivative is taken in the sense of distributions). In particular

*(u) x e L(S) and u satisfies

(3.19) fT fxMu) + b(u)] - 1'00,x) uo(x)dx

1 -for all 8 e c C(s) which vanish for large jxj and t - T.

ii) For any u., 4. and *+ nonne functions such that lu O ) is locally

Lipschitz continuous on (11,12), and such that *(*_) and (* +) are absolutely

-16-



continuous on 10,. and *.(0) - uo(1 ), U (0) U 2), there exists at least one

generalized solution u of (FBVP) such that *(u) e L
2 
(R) (distributional derivative)

x

and u satisfies the Identit x

(3.20) ff {ex [4(u) x+b(u)] - 8tuldxdt - e(°ox)u (x)dx.

for all e e c(R) which vanish for x -l1 1 x 12  and t - T.

i1t) F any u nonnegative functions such that #(u) is locally Lipschitz

continuous and bounded on (--,l2), (4) is absolutely continuous on [o,T], and

f(o) - u o(1 2), there exists at least one generalized solution u of (MSVP) such

that f(u) e L 2(H)
x loc

(distributional derivative) and such that
12

(3.21) JSi(t[(u) +b(u)] - etu)dxdt f 2 e(ox)uo(x)dx

for all - e c 1I(H) which vanish for x - 12, for large lxi and for t = T.

The proof of I) is a simple consequence of the fact that

I (uk)xl - '"((f-1(uk)))x I ' C°'lf-l(Uk)xl ' C*-C

where C* - max b(uk(tx)) and k ) 1. Otherwise the proof is standard (see e.g. [14]).

In order to prove ii) we need the following estimate near the boundary.

Lemma 3.1. Assume t and b as in Proposition 3.1. Let ua Ind satisfy the

assumptions of Lemma 2.1f(3.7) and
T

(3.22) 1 I(*i(t))tdt 4 L* for i - 1,2 (L > 0)
0

Then, for any 8 > 0 , there exists a constant C
.
, which depends only on LL*, M, T and

6f such that

(3.23) fJ (u) dxdt f C*

or any T e (0,T].

Proof. We shall only prove that

IT n;+8

J f I ((uX) 2dxdt -

T Vl Ca

(the estimate f 126 {(4U) 2
dxdt -C is obtained in a similar way). The key idea is

0 P2 Le 2
due to Gilding [1-'.- Lt X (t,x) - #(u(t,x))-(l,(Mt)). If we take equation (E),

multiply it by y and integrate by parts we obtain

-17-
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T~ ?I+6 {0Ux2dt T

(3.24) Wu) 2 dxdt = (((U) )(tn +6) + b(u(t,nl+6l)lx(t,nl+6) dt -

0 I 0I

T n1+6 T n1+6
" 10 I1 b(u)(l(u)) dxdt - ff I

1 
ut#lu)dxdt +

0 1  0 1

T n1+6

+ 0 f I u (tx) *(*(t))dxdt
0 I

We denote the four integrals on the right hand side of (3.24) by I, 12, 13 and 14

respectively. The only difficult term to estimate is I (see [14]). But by Proposition

3.1 we know that

If (u) (tn +6)1 4 C for any t e [0,T)

Then

#(u) xl(t,n 1+8)l I-'f'l(f- u))x(t,n 1+6)I 4 C'

for m C>•O. So
flor s 2 *(N)T(C' + sup b(s))

a C (0,M]

Proof of ii) of Theorem 3.2. Now the functions U'k' *'k and f+,k can be assumed to

satisfy the conditions given in the proof of Proposition 2.1 as well as

for any 6 e (0,1) there exists a constant L(6) such that

I. (Uok)'(x)l ( L(6) for all x e (11+6.12 - 6)

and
T T
f 1*(*_, kl(tl))dt, f If(* +,k(t))'Idt 4 L*.

0 0

Then, by Lemma 3.1, there exists a constant C* (which depends only on

L(O), L, M and (O -12-11 )) such that
4

(3.25) +2 T (uk)xI 
2
dxdt + f

1
2 f {4( Uk)x

}
2 dxdt 4 C*

I1 0 12-20 0

for all k ) 1. On the other hand, by Proposition 3.1 there exists a constant C1 which

depends only on L (0) and N such that

(3.26) I(#(uk))x(t,x)I ' C1  for all (t,x) e [0,T] x [11+2,1.2-20]

-18-

- .- . .. , - ...



From (3.25) and (3.24) we obtain that #(Uk) x  is uniformly bounded and by using the

fact uk is a classical solution it is easy to see that the weak limit

v e L2 () of {*(uk) x } can only be *(u) x . The proof of iII) is analogous.

Remark 3.2. By using a generalization of the Mach Theorem ([2S] p.204), it is not

difficult to show that, under the assumptions of Theorem 3.2, the generalized solution

obtained in the above result Is a classical solution of (a) in a neighborhood of any

Interior point (to , x) where u(tox o ) > 0 (see e.g. [1] or [141).

Remark 3.3. Suppose, for instance, that b(s) ) 0 for any s , 0. Given 1 e R, we

define the stationary function

(3.27) U(t'x) f((l-x)*) . (-10) if x • 1
( *If x > 1.

It In easy to see that u is a generalized solution of (MBVP) and satisfies u(0,x)

f((l-x)
+
) for 0 4 x < - and u(t,0) - f(1l) for t e [0,T]. Moreover

(f I(u))x  ((l-x) x

hence (f I(u)) x . 0 if x > 1 but (fI (u)) x-1 when x t 1. Then the estimate (3.14)

is exact and can not be improved. (The function (3.27) will be used in a forthcoming paper

of the authors in order to prove the boundedness of the right boundary of the support of

the solutions of (2)).

Remark 3.4. In some previous works (see P!61, (141) a different notion of solution of (CP)

(respect.(FWPV) and (KSVP)) is introduced by means of the integral equality (3.19)

(respect. (3.20) and (3.21)). Thus, following [141. a function u defined on S is said

to be a weak solution of (CP) if u satisfies i) and iii) of the Definition 1.1 as well as

the condition
T

(3.29) 1 1- to. (#(U) + b(u)W -et }dxdt - 0(0,x)Uo0(x)dx

for every 0 e C (S) such that 0 vanish for large I x I and t - T. Analogously, it

Is defined the notion of weak solutions of (PM) and (MBVP) by substituting the integral

conditions of Definitions 1.2 and 1.3 by the conditions (3.20) and (3.21) respectively.

Theorem 3.2 stats that, under some natural assumptions, every generalized solution is also

-19-



a weak solution. The following result shows the equivalence between both notions of

solution.

Theorem 3.3. Assume # e c ((0,.)) and b C0 ((0,-)). Then every weak solution of (CP)

(reap. (FBVP) and (MVP) is a generalized solution of (CP) (reap. (FBVP) and (MBVP)).

Proof. We shall follow an idea suggested by M.G. Crandall to the first author of this

paper. Let u be a weak solution of (CP) and let P - [to,t I  x [x1 ,x2]

and e C1 2 (P) such that 4(t,x ) - (t,x2| - 0 for any t e [to,t] C [0,T). Let
t,x 1 2

n e c2 () be such that

a) n(r) I 1 if r 4 -1 and n(r) - 0 if r > 0

b) n'(0) - n'(-1) - 0

For every £ > 0, we define the test function e (t,x) as

t-tI t -t x-x_ x -x

t ( t x ) ( - ) n ( -  - hif (t,x) e P

E (t~) 0 Eotherwise

From the definition of n, It is immediate that 0 e Cl(s) (and support 0 ) C P. By

assumption we have
T TT

(3.29) 0 -f l udxdt+ f (u + _0. b(u)dxdt
0 o 0

= II£ + 2"£+ I3£
1c 2,e 3,e

One has
t-ti t -t x-x 2 x -x t-t I

-I1,'-ff~ u n(-C --- --- )n(---)dxdt+ff C* ,,.(---)n( )n( )n( )]dxdt-
p

t -t
-1f u [n( I '(-0--) n( ).( )Idxdt = ff Cpn( )n( )n( WnC )dxdt +

P E p

+ f x 2 0 t ' t I T Xn ( 2 ) x( I - , T d
x Co t (ET+tI X)U(ET+t,,x) n( - + n( ) - l Td-

£
x 0 tt XX XX

x2 01 -t - 2 1 -- t S t ,(to-T,,x)Uito-ET,,,) ,1( -,,,(.'-,,,(;-:,, .,,dT
£

Then when e converges to zero, we obtain

I1,e ... iptudxdt - x2 ( u(ix)dx + x2 (t

P10

-20-
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Analogously

1 , e,,,#* ),dxdt t - O, 001 2~ * dt- Jf B *Cx#u)dxdt

t - X-K XX-
2 i% 1o o o () + r.n n1 2Zn

I no -x2-),(-) , x2 dt -ff e *(uldxdt - I1 + 1
C xI pC'xx 2 C 2,e

Thanks to the fact that r. (t,x 1  (t,x 2) 0, one has

I ICR (t,x )#(U(t~x) X C(t,x )O(u(t,x )))dt

0

On the other hand

- 2, C I CxxflnP1C)doflC)*u)dxdt + 2 JJp
-x 2 x I-x cxX xC -x

C 2 C 22

x-X X x- -x
2 n,~( + In(-x) n~ IWdd

2 £2 C £

Arguing simuilarly as in the integral I w obtain

1 x-2 ) 'l -x I .(cx )nlx)(~dd-+t'

0

- ( t,x I)O(u(t,x ))dt

-21-



when C + 0. Moreover

t-tl t-t xl-x x-x 2  t 0
2 012C C -o~ 1_ 2

C

x+ t -t xx
2 -+- 0 ' n(-t)-(-(t-x +x))dxdt

and then tI  tI

,2 1:. fto (t'xl )(u(t'x2)) 
f0  Tn*lr)dT)dt - Jt0#(t,x2 l(ult,x2 )dt

(we recall that n'(O) - '(-1) - 0). We also remark that

t-t t -t x-x X -X
1 2 o 2 1t,x n(0,-- nl(-- )n (- )#(ult,x))dxdt 0

C= C

x -x

for every C) 0 such that 0 < C < 2 . Then

.ft ° ; (u)l x x 2 dt - C *(u)dxdt - 2 fI Vx* u ) l  dt
2,0 x x-X1 0 x xI

Ifpa.x#(u)dxdt - ft Cx *u)I x-x2 dt

Finally, in a similar way we obtain

1 S2. ffptxb(u)dxdt.13,c -

Then, making c + 0 in (3.26) we obtain that -I(u,C,P) - 0 and then u is a generalized

solution of (CP). The cases of the problems (FBVP) and (MBVP) are similar.

14. Uniqueness, comparison results and continuous dependence

In this section we prove that the generalized solution obtained in Proposition 2.1 and

Theorem 3.1 (i.e. the limit solution) is the unique generalized solution.

Our uniqueness result will be a consequence of some LI- estimates that also prove the

continuous dependence of the solutions on the data. Other important consequences of these

L -estimates are the comparison results showing the monotone dependence of the solutions

with respect to the data.

To formulate general results about the comparison of solutions we introduce the

following definition,
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Definitxon 4.1. Let 0 be a closed set of i. A function v(tx) defined on G is a

generalized supersolution (reap. subsolution) of the equation (E) in G if

a) v is nonnegative, bounded and continuous

b) v satisfies the integral inequality

I(v,,P) 4 0 (re8. ) 0)

(I give in the Definition 1.1) for any rectangle P - [to, t1] x 1x, x2], P C G and

for all C * C I':(P) such that 4(t,x1 ) , Vtox 2) - 0 for any t e (tot I.

In this section we shall assume the following hypotheses:

e C I(O,.))lC
2 
((0-)),#(0) - #'(0) - 0 and there exists a convex function

e c(0,')) nc 2 ((,-)) such that (o} - 0 and 0 < p'(r) 4 #'(r) for r > 0

b e c0((O,-)) ) C 2((0,)), lim inf b'(r) > - and
r+0

+

lim sup b"(r) < +- if lim sup b'(r) -

r-0
+  r+0

+

We remark that (H ) obviously holds if * is a convex function and (Hb) is

trivially ve-ified if b eCc ((0,-)) (no condition on b is requested in that case). On

the other hand, if b(s) - s
a

, e t, then (b) is satisfied if A ) 0.

We start considering the (CP) problem. The main result of this section is the

following:

Theorem 4.1 Assume (H.) and (b) or (H_b).

Let u be a limit solution of (CP) continuous on S and let u (resp. u] be a

generalized supersolution (reap. subsolution) of (E) on G - S. Then for every

0 4 t e T we have

(resp. J .(_,(tx)-u(t,.)) dx 4 J_"(u(0,x)-u(0,x)) +dx), where r+ - max (r,o1

As a first consequence of the above result we can state our maln result about

uniqueness.

-23-
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Theorem 4.2. Assume (H ) and (H b ) or (H )

Let u ° e Cb(,) u )- 0. Then under one of the following hypotheses there exists

an unique generalized solution of (CP):

1) (3.1) is satisfied and 0(u 0 ) is Lipschitz continuous.

2) (3.2),(3.3) (3.4) are satisfied and f-l(u0 ) is Lipschitz continuous (f defined

in (3.5)).

Before giving the proof of the above result let us make some remarks. First of all,

we recall that by Theorem 3.3 every "weak solution" (see the definition in Remark 3.4) is a

generalized solution. Then, by means of the regularity shown in Theorem 3.2, Theorem 4.2

gives automatically the uniqueness of weak solutions, improving the knowledge in the

literature about equation (E) (see the Introduction). Secondly, if we consider the

particular case of *(s) = sm and b(s) - a (i.e. (E) coincides with (E then,

for adequate data, Theorem 4.2 shows the uniqueness of generalized (and weak) solutions

under the following restrictions:

m>1, >0.

In particular the uniqueness of solutions for the evaporation type problems (X e (0,1))

follows.

Other consequences of Theorem 4.1 will be commented upon later.

Proof of Theorem 4.2. Under the assumptions of the theorem, we know the %,.tence <,i e

least one limit solution of the problem. Moreover, this limit solution is continuous (see

(14] and Theorem 3.1). Then, if u is another generalized solution of (CP), we can

obviously apply the estimate (4.1) and then u 4 u on S. Analogously u is also a

generalized subsolution of (E) on S and the dual estimate of

(4.1) implies that u < u on S. In conclusion u - u.

Proof of Theorem 4.1. Let u - lim uk be the limit solution of (CP) obtained in
k+-

Proposition 2.1. i.e. (uk) are classical solutions of (E) on the sets

Qk - (0,T)x(-k-1,k+1). We start approximating u by classical solutions of (E) but

defined on full set S - (0,T) x (-.,+-). To do this, we construct a sequence of

functions (uoj (x)} such that i) uo0 e CM(R), ii) uoj (x) + u(0,x) as j* -,
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uniformly on every bounded interval of 3, iiI) u o (x) Uo'j u x) for all j - I and

x e R and iv) 0 < c 1 o, x) N for all j O I and x e 3., being

e j + 0 as j + +- and M sup uo . Now, by applying Proposition 2.1 to the case of u.

'u oj' we obtain a sequence us of classical solutions of (W) on 8 such that

e j C u (t,x) 4 M for every j I 1 and u is monotone nonincreaeinq in S. Finally

u(t'x) - Ila u (t,x) in S.

We shall prove estimate (4.1) by showing the inequality

(4.2) f (u(tx)-u(tx))+w(x)dx fJ(u(0,x)-:u(Ox)) +dx

for every w e C0 (i), 0 4 w -9 1. To do this, we suppose that (supp w) - t-LL]. For

every t* e (0,T], let PZ (O,t*) x (-r,r) be where r > L + 1. Let c e c 1:(p) such
t x

that (t,-r) - 4(t,r) = 0 for all t e (O,t*J. Then I (u ,1,P) - I Cu,?) 0 0, i.e.

(4.3) 1 r (u j(t*,x)-a(t*,x)C(t*,x)dx jr (u j(0,x)-u(0,x))C(O,x)dx +

-ft*[o(u (t,r))-#(u(tr))] x(tr)dt + ft*[[ (t,-r))-#(G(t,-r))] ¢(t,-r)dt

+ ff (uJ-Z)(Ct+AJ C xx Cx)dxdt

P

where

(4.4) Ai - A (t,x) - fl *'Ceu(t,x) +(1-e)Z(t,x))dO

and

(4.5) B . B(tx) = f' b'(eu (t,x) + (1-O)Z(t,x))dO

By assumption (H ) and the properties of u, we have

(4.6) 0 < 2- -( ) (  
A
1
(t,x) 4 M1

for every (t,x) e P and for some M 1 independent on J. On the other hand, thanks to

hypothesis (Hb) there exist two real numbers M2 and M3, (M2 independent of J), such

that

(4.7) M 2 4 BJ(t,x) 4 M 3(J)

for every (t,x) e P. Indeed, if - < Il +s inf b'(s) • lim+ sup b'(s) < +- , there exist

M2  and M3 (both independent of J) such that M 2  ( s) 4 M3  for every s e [0,M and
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then (4.9) is obvious. if lia+ sup b'(s) - +, then by the second part of (Hb), there
.+0

exist M2 and M3  (both independent of J) such that

K 2 4 b'(s) and b"(s) < ;43

for every a 6 (0,M]. Therefore

M f' b'(Ou1 + (1-0)u)de ( J b-(e )do ' 143(O(u -C + (1-0);)dG

1 *J

.-br IN l4
2 0 0

Then (4.7) holds with M3(i) - b(.i + IN.N

Analogously, if we suppose (Hb) we can find two real numbers 20) and 13 (33 independent

on J) such that M2(J) C B(tx) 4 43 for every (t,x) e P. Hence, in any case, we can

assume that C2(J) 8
1 
J(tx) 4 N3(j) for every (t,x) e P.

Define now, on P - Pr' two sequences of smooth functions, {AJr I and [BJ'r(

n n- I n n-l'

satisfying

tA '
r } 
Iis monotonically decreasing on n and converges uniformly

n

to A J, on P (when n +).r

(B J'r, is e.g. monotontcally increasing on n and converges uniformly
n

to B 
, 
on P (when n +).

r

Than, by (4.6) and (4.7) ws have

0 < j n N

and

H2 .3 ir (3).

On the other hand, inequality (4.3) can be written in the following way:

(4.8) Ir (u i(t ,x) - -(t *,xi)Wt *,dx e (u (O,x) - u(O,x))C(0,x)dx +

+ ft*[#(u (t ,-ri) - 6(u(t,-rfllr(t,-r)dt - ft, [#u (t,r)) - (;(t,r))1(xtr)dt

/, (A-A J'nr )(u ')Cx dxdt 4 flp n B i)uC dxdt +
r r
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ff, A Jr xx+ y J~r )x u -u4)dXdt
tt nr

Now, let C Jr be the classical solution of the linear parabolic problemn fr~ + 21 .0 t n P
(4.9) (t*,x) -w(x) X(x) on (-r,r)

€(t,-r) - (tr) - 0 on (O,t*)

where X is a given function such that X e c (it) and 0 4 X 4 1 (The existence and

uniqueness of C is a well-known result (see [251)). One of the crucial points in the

present proof is based on the following estimates of the solution of (4.9).

mma 4.1. Let C be the solution of (4.9). Then

i) 0 4 C(t,x) 4 max lu(x) X(x)l 4 1, for all (t,x) e P

11) There exists X4 - 34(j) such that

0 4 C (t , x) < 1 4 j -Ix l,
tX) < M4(j) a for all (t,x) e Pr

Aii) There exists - M(j) such that

max {(I x(tr)ljIex(t,-r)I) 4 ,(J) eGr , for all t e (Ot*]

iv) There exists 6" M6 (j) such that

Cx (tx)I 4 N(j) for all (t,x) e Pr

v) There exists M7 M7(jrt*) such that

•* fr (C ) M(J,r,t*) for all (t,x) e P

Proof of Lemma 4.1. - We shall follow some of the ideas introduced in (281. i) is a

consequence of the maximim principle. To prove ii) let us consider the function w z -

C, where

z(tx) - C exp (-x + (t'-t)).

where C and 0 will be chosen later. Let P+ - (Ot*)x(0,r). then we have
r

9V B sxp (-X+n(t*-t))(AJn
r - 

0) e &xp (-x+0(t*-t))[ 1M + 33(J) - <) ( 0

if 0 m I + N3 (
) 

"

v(tex) - C e-x - w(x)x(x) ) 0, for every x e (O,r]

if C e -1 0 i.e. C )e L .

w(tO) - e0(te -t ) ) 0, for every t e C0,t-J,

v(t,r) - C exp (-r+(t*-t)) ) 0. for every t e (0,te•
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Hence, by using the maximum principle ve have
0 ( € (tx) 8(t*'-t) -X I ( 

x

+

on P being
M:(J =e~t'(m *M

3
(j)41)

14 L a 1 3

On the set P r 10,t*lx[-r,O] we use the auxiliar function w z-C, where now

z(t,x) - C exp (x+O(t*-t))

Then we obtain

0 4 ;(t,x) 4 M2(j)ex

on P , with

2 L t*(0-M (J)+I)

This prove ii) for M4(j 1 14x 2M(j,(j)). (W4e remark that if H2 and 143 ar

4(3) 'max N ) 4 2 ar

independent on J, the same holds for M4 ).

In order to prove iii), we define the function

w(t,x) - • exp O(x-r+l) - C(t,x)

for some B to be chosen. Consider the cylinder P(r-1,r) = (O,t) x (r-1,r). Then we

have

Lw exp B(x-r+1){02
AJ r - Ojrn a -rlexp O(x-r+i)fo ON 3 (j)}) >0

-r+1 -+if > ax(M3(j)cj

w(t,r-1) -e
-r+  

- C(t,r-1) 4 C e
-r+ l

w(t,r) -e -

w(t*,x) -er l a(x-
r+ l

) (we recall that r > L)

Then, w(t,x) attains the positive maximum e-r+lte at (t,r). Hence
rx(t'r_0 ) . e-r+l Se 0 1(, -r fo ! . O~ ()411 (~r-~ er~e H5 (j -r for 1 5  $(j)e 6(j)

x 5 K5
Now, if we consider the function

w(t,x) - e-r
+ 

exp O(x-r+l) + 4(t,x)

we have Cx(t,r-0) M (J)e
-r .  

Finally, by using the auxiliary functions

w(t,x) - e-r+exp B(x+r-1) t C(t,x)
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on the set P(-r,-r4l) - (O,t*) x (-r,-r~i), for some suitable 0 we obtain

14 tk - 0)l 4 (j) ( "r for -o. H (J). This prove. iii) for

X (J) - max {1M(j),H2(j))

Part iv) is a consequence of the fact that the coefficents Aj,r and B ,r  are bounded
n n

independently of n and r. Indeed, in these circumstances we can apply the results of

the classic theory of linear parabolic equations (see 1251). Finally, to show v) we

multiply the equation in (4.9) by 4xx and we integrate. Then

t t r t'r

(4.10) f t i A r (C )2 dxdt f -t J r. dxdt + fI rBjr CxCdxdt = I + 2
0 -r 0 -r 0 -r

Integrating by parts, it results

to r r r L

- ~ ~ 2 d 2 (~"xx)d ~ ~(, 2dx ( 1/2  Xx)0 -r -r r -L dx

M7

On the other hand,

t* r r t* r I
12 [] ] (Bn x

)
dxdt 2 [ (xx1dxdt1/2 4 (t" 20) 2 max{IMKlWl1, 114 lJ

2 (a n Cx) ~ -dxdt] 2~ If(x 3*J
0 -r

y ( )2 dt1'/2  2 to r 2 1
NO If x xt 7]rt)ff (Cxx 

) 2dxdt] Y
2

0 -r 0 -r

Therefore, from (4.10) we deduce

to r t 
2ddt + 2 tr 2

0 I- xx (C M I 7 + 7 (i,r~t')(Jf -r(C ) dxdt)/2 -
0 .-r xx u(cj) 0 -r

This ends the proof.

Proof of Theorem 4.1 (continued). By substituting the solution n solution of

(4.9), in the expression (4.8) and applying Lema 4.1 we have
r r

(4.11) " (u(t*,x)-u(t*,x))w(x)X(x)dx 4 f (u (0,x)- 10,x)l+ x
-r -r

-29-
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+ t M6 CJ).-( max I*(u(t,r))-(u(tr))I * max I#uj(t-r))-*(ut 1 -r))I) +
O<t~t* 04<t*

+3 x Ia -A3 rJ~ I x luj-ul P J,r,tw) + max ISuer- 1-I 2t-r 6C4j)PTr P Pr P
r r

By taking limits, first with respect to n Cn +i ) and then with respect to r (r +-

we obtain

(4.12) f1uC(t*,x)-lu(tx))w(x)X(x)dx 4 f (u (O,x)-;CO,x))+dx

(we recall that IuJ-ul 4 N and that 1#(u )-#(u)f C #(N)). Letting, now j diverge to

infinity, we have

(4.13) f (u(t*,x)-u((t*,x))w(x)X(x)dx 4 f (u(O,x)-(O,x))+dx
-S1 -.4

Finally, relation (4.13) is also true for the function X given by X(x) - 1 on the set

{x : u(t*,x) u (t*,x)) and X(x) - 0 otherwise. (Indeed% it suffices to approximate the

function X by )( e c() and then passing to the limit on m). This concludes the proof

of (4.2). Finally, if u is a subsolution of (Z) on S, by an analogous argtment we obtain

f 1C,(t,x)-ult,x)) +w(x)dx I f (u(o,x)-u(o,x)) +dx
-ri -e

for every w e C7 (it), 0 4 w C 1, and the proof of Theorem 4.1 is finished.
0 Us

For the problems (MBVP) and (rSVP) our answers are similar to theorem 4.1 but the

proof is somewhat more delicate.

Theorem 4.3. Assume (H ) and ( b ) or b

a) Let u be a limit solution of (FVP) continuous on R. Let u(reap. u) be a

generalized supersolution (resp. subsolution) of (3) on G - R such that

* (t) < u(t,l ) * < ult,2t
(resp. *Ct) u(t,l1) , * (t) ) u(t,1 2 )) for every t e [0,T). Then

(4.19) 1S2 (u(tx)-U(tx)) +dx f 12 (uCO,x)-U(0,x))+dx

(rasp J1
2 (u(t,x)_u(t,x)) dx < f (u(0,x)-u(O,x))+ dx)
I I

b) Let u be a generalized solution of (BVP) continuous on I. Let u (reap. u be
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a generalised supersubsolution (ren. subsolution of (3) on G - B. such that

(roap. #(t) u(t,1 2 )) for ever t 6 10,T] • Then,

1 + 2+

(4.1s) 5 -W(u(t'X)-u(t'X)) ax dx

1 + 1(reap. f 2 (u(t,x)-u(t,x)) dx -C 2u+,dx)

f__ (u(0.X)-u(0,X)) )

About the uniqueness question we have

Theorem 4.4. Assume (H) .. d (% ) or (b.

a) Let uo e cb(11 , 12) u a ) 0 and t, e C([OT.]), , + .0 satisfy

*.(0) - uo(11), +(0) - u (1 2). Then, wnder one of the following hypotheses there exists

an unique generalized solution of CPBVP):

1) (3.1) is satisfied 4(uo ) is locally Lipschitz continuous on

(1112) a*d ),*( .) are absolutely continuous on (0,T).

2) (3.2)(3.3) and (3.4) are satisfied and f I(u0 ) is locally Lipschitz continuous on

(11812)•

b) Let u e Cb((-.,l21), u0 > 0 and * e C([0,T)), *; 0 0. satisfy *(0) - uo(1 2 ). Then

under one of the following asemptions there exists an unique generalized solution of

1) (3.1) is satisfied #(u ) is Lipschitz continuous on (--,12- 6) for every

6 0 and 4(t) Is absolutely continuous on [o.T].

2) (3.2), (3.3) and (3.4) are satisfied and fI (uo ) is Lipschitz continuous on

(-.A2-6) for every 6 > 0.

Proof of Theorem 4.3 a) Let u be a limit solution of (rBVP) continuous on

R and let u be a generalized supersolutlon of (3) on G - R such that

4(t) 4 u(t,l and 4,(t) 4 u(t,1 2 )

for every t 6 [0,T). Let P (0,t*) x (11012). Then if u - li uj we obtain as in

(4.8), the following
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(4.1)11

(4.16) (u1 (tX)-u(t*,x))C(t*,x)dx -C (u (o,x)-u(o,x))C(ox)dx +

t* t*

" f ( u(tl 1 ))-O(u(t,lI))Cx(tl 1 )dt - 0 ({ui(t'l 2 ))-*Cu(t 1l2 )})fx(t'12)dt +
0

" ff (Ai-An (u -;)C dxdt + ff (Bi-Bi)(u -;)C dxdt +
n j xx P n j x

" ff (Ax + 4- j C )(u-u)dxdt,
p

where {Aj )  
and (8j) are two sequences of smooth functions as in the proof of Theorem

n n

4.1. Now define C - C to be the classical solution of (4.9) after substituting
n

Aj
'
r B

j
r and P by A

j
, Bj and P respectively. Our intention is to pass to the

n n r n n

limit in (4.16) first with respect to n and afterwards with respect to J. To do this we

need to distinguish two different cases:
{1 )

aI ) u(tl ) > 0 and u(t,l2) > 0 for every t e [0,iT

a2 ) U(to,11 ) = 0 or U(to,12 ) 0 for some to e [0,T].

If a1 ) takes place then we can choose a, and *+4, such that

(4.17) E *_(t) < u(t,11 ) and e ( 4+ Ct) u(t,12 )i I +,,

for every t e 10,T]. Thus, remarking that Cx(t,1 1 ) P 0 and Cx(t,12 ) 0 for every

t e [o,t*] we obtain the conclusion after passing to the limit in n and j

respectively as in the proof of Theorem 4.1.

It is clear that (4.17) cannot be possible in general (for instance if

1(to1 1 ) - 0 or u(to, 2 } = 0). Now we shall obtain estimates on C (tll) and

r (tl ) which are sharper then those stated in Lemma 4.1.x 2

Lemma 4.2. Assume (H ) and (Hb). or (H- ). Let C be the solution of

(4.18) ( i iiac + Ct .0 on(4.18) (t*x) W(x) X(x) on (111 2)

C(t,11) I (tj 2) = 0 on (O,t*)

where X is a given function such that X e C: (l1,l 2 ) and 0 X 4 1. Then there exist

two constants %8(J) and M%(j) such that

(1) The authors wish to thank M. Dsrutch for pointing out some omissions at this point of
the proof in a preliminary version of this paper.
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(4.19) 0 4 Cx(t,11 I %s(J),

(4.20) 9(j) 0 C3(t,12 ) 4 0

for every t e (o.t*) Moreover

*(¢1 )l 6 (i) * 0 and #(C )Mg(j) . 0

when j4o

Proof. We shall prove (4.20). (4.19) being obtained in a similar way. To do this, we

construct an adequate function a (x) in such a way that the function w(tex)

a jx) + V(t,x) has a positive maximum at (t,12 ). Then we shall deduce that

Cx (t12) N - 0;(12 that is, (4.20). Consider the cylinder P(1 2-6,12) -

(ot) x (2-6,12) for some 6 > 0 fixed. Then if a' ) 0 and o; A 0 we have

£ W SAj n - ) £ (x)-M3 (I)o(x) "
2 

> 0
n (7) n a(x) 3

for some X e £ if we choose
j

ojx - C e ) I4 ) K
2

•~) ia x ) + LjM3 (:)c 'j) - M3 (j) x

for every Ci and Lj satisfying

(4.21) C exp3 (12- - K A 0 (a' > 0 condition)jx ,€) M3 (j)

and 2
K2 A(C 3 M3(j)e

(4.22) L - 1 -C exp 1) W(tl ) > 0 condition).
i > 3 (I) 2 J M3 ()j e PU ) 2 2

(We have used the estimates on A and given in the proof of Theorem 4.1. It isn

clear that we may suppose M 3 ) > 0).

On the other hand, on the parabolic boundary of P(12-d , 2 ) we have

w(tj 2 ) - a(12)

w(t,12 -6) a (1 2-6) + 1

w(t*,x) - o x) (if we choose 6 such that w(x)x(x) - 0 for x e (1 2- 61 )).

Then, as a' ) 0, w attains a positive maximum at (t,1 2 ) if we have

20 )(12-6)+ ( a (1 ) i.e. if K: and C: satisfy

(4.23) 4 C ( exp- 1Y 1(lexp M3(j) -

( -33-I3:)< M(ep , ) 2)1ep- ))



It is easy to see that if we choose

M3(()Ce 1 3 iC

cj- p '. EJ) ) min {1,,(, 1€. M( .( (Dec i

N 3(J)cj 1 ' 143 ( 1J) e xp( p(C )

and 
X

2 2 (C 1(c exp N(J)e 11 J

j 6 j l3 (i)cj uI(E i) 2 143(j)

then (4.21) and (4.23) are satisfied. Tus r (t ) -0;(l2) being
x 2 ;(12

142
C 14(3(j)c 1  Ki

;(12 -Cj 1 (cj) 12) M3(j)

M3 ljlE1 12  
K
2

Now, the sequences 1Cj exp ( N()2 
)
) and j I are bounded and then

j 3(j)
*( )o (12) * 0 when j + .

Proof of Theorem 4.3 (continued). Suppose that a2 holds. Then if we denote

I - {t e (o,tl):#(( t)) > *((t,21 ))1 we have I - {t e (o,t*):u(t, 1) = 0) and then
to
S (f(*., Wt ) - #( (t ,l 1)c x lt llIldt e f W0 ,j t ) - #( (t ,l IllCxlt ,llIldt -C

4 t* (C i) Meal()

(because on I we can choose W (t) - C. By Lemma 4.2 we have
t*f t *(o., (t)) - +((tlIl)Cxlt'lI)dt + 0

when j converges to infinity. Similarly
t*

o
f 0#( +j t))- G~'i2 Mx (tl2W+0

when j converges to infinity. Then the conclusion follows by passing to the limit in

(4.16) in n and then in J.

We remark that in order to prove the conclusion for subsolutions it is not necessary

to use Iemma 4.2, because in all cases we may choose *.,, and *+,j satisfying

2(tl I ) 4 W(t) and u(t,l 2 +(t)

for every t e 10,T].

The pr'of of part b) is an easy modification of the proofs of Theorem 4.1 and the

above part a).

The proof of Theorem 4.4 is analogous to that of Theorem 4.2.

-34-



Other important consequences of Theorems 4.1 and 4.3 are included in the following

theorem, which shows continuous and monotone dependence of generalized solutions with

respect to the initial data. ( We shall consider only the (CP) problem, analogous

statements holding for the others).

Theorem 4.5. Assume the hypotheses of Theorem 4.2.

i) Let ul. be generalized solutions of (CP) corresponding to the initial data

uo and u respectively. Then

(4.24) u(t, )-u(t. ) I -LI(R) L1(E}

for every t e (0,T).

ii) Let u be a generalized solution of (CP) and u,u generalized super- and

subsolutions of (3) on G - S Then if u(O,x) u 0(X) 4 Z{O,x) on (-,) it

follows that

(4.25) u(t,x) 4 u(t,x) 4 u(t'xI

for every (tx) e S.

Proof. The assertion i) follows from part a) of Theorem 4.1 by applying the estimates to

u and u - u. Part ii) is also a trivial consequence of such estimates.

Other estimates giving the continuous dependence on the Initial data as well as the

numerical treatment of equation (9) for b C 1([0,-)) can be found in (331.

We shall end this section by making several comments on the obtained results.

Remark 4.1 . The conclusions of Theorem 4.1 are true even under more general hypotheses.

So, for the (CP) problem e.g., it is enough that u, u, u be in the function space

C((OT] t LIc()). The existence of solutions of (CP) in such a function space is not

difficult and some hypotheses on # and b made in Theorem (3.1) can be weakened (See,

e.g. the approach made in (21 considering a different nonlinear degenerated parabolic

equation).

Remark 4.2. If we denote by S(t)u - u(t, ) the generalized solution of (CP)0

corresponding to the initial datum uo  it is not difficult to show that S(t) is a

semlqroup. The estimate (4.24) shows that it is a semigroup of contractions on the space
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X - L (a). Our conclusion, then, coincides with the one obtained by the abstract theory of

accretive operators on Banach spaces and evolution equations. Such an approach has been

applied to the concrete case of equation (E) by different authors (see [38], [37] and

[5]). We remark that, by means of such an approach, it is possible to prove the existence

and uniqueness of a function satisfying (CP) in an adequate sense. This is made under very

general assumptions on #, b and u (see [51). Such type of solution is, in fact, a

generalized solution of (CP) under hypotheses weaker than that the one in Theorem 4.1.

However, the abstract approach does not guarantee the continuity nor the uniqueness (among

all the possible generalized solutions) of such a function.

Remark 4.3. There exists a vast literature about the existence and uniqueness of solutions

+
of (CP) when function * is not assumed to be strictly increasing on 3 . It is clear

that the approach is very different from ours. Indeed, such an approach includes the case

E 0 and then equation (E) reduces to the "conservation law" equation

ut - b(u)x - 0

for which it is well known the existence of discontinuous solutions. The uniqueness of

solutions is then found by introducing a different notion of generalized solutions of (CP)

(see, e.g. [36], [23], [12], [38], [39] and [26]).

Remark 4.4. - Comparison results like the one in part ii) of Theorem 4.5 are of a great

utility in the study of the qualitative properties of solutions (see e.g. [19], [15], [9],

[21] and [22J). In a forthcoming paper by the authors, Theorem 4.5 will be systematically

used to derive some qualitative properties of the solutions of the evaporation equation

(EmX, m > 1, 0 < X < 1).

Acknowledgments: This work was partially elaborated while the first author was visiting the

Mathematics Research Center at the University of Wisconsin-Madison-USA.
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